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1. 

In a previous paper [1], a trial of statistical evaluation for a probability
distribution of random variables on the power scale was proposed by introducing
some differential operators with respect to distribution parameters reflecting
hierarchically non-stationarity, non-gamma property and various type linear
and/or non-linear auto-correlation information of input random signal. The
weighting function (impulse response) of the system was treated in an expansion
expression form taking a rectangular weighting type as the first term.

In this letter, once after noticing the importance on proper property of linear
system mechanism like a transfer characteristic, the probabilistic evaluation of the
system response to the standard input is first given by employing an inverse
Laplace transformation with use of the residue theorem to reflect concretely the
system characteristics into the evaluation. Then, by introducing some time-varying
operator to the above expression of system response, probabilistic response
evaluation of system can be found for an arbitrary random input. In the
experiment, a single wall insulation system under a music noise excitation is
employed and its theoretical evaluation of probabilistic response is compared with
the experimentally observed data.

2.    

From the viewpoint of frequency analysis, let us consider a power linear
type stochastic system with an input of N dimensional non-negative acoustic
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signal X(= (X1, X2, . . . , XN )T, 0EXi Qa, for i=1, 2, . . . , N) and a single
output as follows:

Y= s
N

i=1

aiXi , (1)

where Y and Xi denote the system output and input of the ith frequency band with
system parameter ai of the insulation system and the number of frequency band
N on input noise.

3.         

- 

In a previous paper [1], a probability density function of non-stationary input
X can be given by introducing a time-varying operator (parameter differential
type) D as follows (details of its derivation are shown in reference [2]):

P(X)=D t
N

i=1

Pg (Xi ; mi , si ), (2)

where

D,1+ s
a

n=1

s
n1 + · · ·+ nN = n

(−1)n�bn (n1, . . . , nN )�bn

×t
N

i=1

G(mi )smi
i

G(mi + ni ) 0 d
dsi1

ni

, (3a)

Pg (Xi ; mi , si ),Xmi −1
i e−Xi /si/G(mi )smi

i , (3b)

bn (n1, . . . , nN ),Wt
N

i=1

L(mi −1)
ni 0Xi

si1w, (3c)

mi = �Xi�2/s2
Xi
, si = �Xi�/mi . (3d)

On the other hand, the probability distribution function of output response Y
under an arbitrary random input can be given by operating D to only the basic
probability density distribution P0(Y) of the output response with excitation
by a test signal of only gamma type probability distribution given a priori by
pre-experiment with an intensity Xi of white noise input (here, Xi s are statistically
independent). That is,

P(Y)=DP0(Y). (4)
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Here, P0(Y) can be estimated by an inverse Laplace transformation of the
following moment generating function on a standard gamma type input:

M0(u),g
a

0

euY P0(Y) dY

= t
N

i=1

(1− aisiu)−mi (5)

with the use of equation (1).
In this letter, P0(Y) is derived from equation (5) by inverse Laplace

transformation by using the well-known Heaviside expansion theorem [3] as
follows:

P0(Y)=L−1$t
N

i=1

(1− aisiu)−mi%
= s

N

i=1

1
(mi −1)! 0 d

du1
mi −1

6euY0u+
1

aisi1
mi

t
N

i=1

(1+ aisiu)mi7
= s

N

i=1

s
k1 + k2 + · · ·+ kN =mi −1

t
N

j=1
j$ i

G0kj , mj ,
ajsj

aisi1Pg (Y; ki +1, aisi ), (6)

where

G(k, m, s),
G(m+ k)
G(m)k!

sk

(1+ s)k+m .

The output probability density distribution for an arbitrary input signal having
the non-stationary and non-gamma properties can be simply found by applying
the previous time-varying operator D to equation (6) as:

P(Y)=DP0(Y)

= s
N

i=1

s
k1 + k2 + · · ·+ kN =mi −1

t
N

j=1
j$ i

G0kj , mj ,
ajsj

aisi1Pg (Y; ki +1, aisi )

+ s
a

i= n

s
n1 + n2 + · · ·+ nN = n

t
N

i=1

(aisi )ni�bn (n1, n2, . . . , nN )�b

× s
N

i=1

s
k1 + k2 + · · ·+ kN =mi − ni −1 6 s

ki

j=0

(−1)n+ j− k1n!
(n+ j− ki )!(kj − j)!

×Pg (Y; j+1, aisi ) t
N

j=1
j$ i

G0kj , mj ,
ajsj

aisi17. (7)
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Figure 1. Experimental arrangement in two reverberation rooms. Abbreviations: Mic.,
microphone; SLM, sound level meter; LR, level recorder; DR, data recorder; SP, speaker; Amp,
amplifire; FLT, filter.

4.  

Figure 1 shows an experimental arrangement in two reverberation rooms. A
single wall of aluminum with thickness 0·8 mm has been employed especially as
one of principal experiments for a linear acoustic system on intensity scale, and
music noise has been employed as a non-stationary input. In order to study the
effect of the non-stationary fluctuation of input noise on the output response
probability, the total observation period of 1000 s has been equally divided into
10 locally stationary sub-intervals of 100 s. Expansion coefficients
bn (n1, n2, . . . , nN )s of input noise have been experimentally observed and then
calculated along equation (3c) in each locally stationary sub-interval. The system
parameters, ai , of the linear acoustic system have been determined a priori by
another standard pre-experiment, and their measured values are shown in Table
1. The system order N has been set in advance as N=4 due to the number of
frequency bandwidths used in the usual octave band analysis of the experiment.

T 1

Estimation results of system parameters

i 1 2 3 4
Center freq. (Hz) 250 500 1000 2000

ai ×10−3 115 72·5 22·2 6·59
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Figure 2. A comparison between experimentally sampled points and theoretically estimated curves
for the output probability distribution of a sound insulation system in specific locally stationary time
intervals under a non-stationary random input. Experimentally sampled points are marked by q
and W observed in the 4th and 8th locally stationary time intervals, and theoretically estimated
curves are shown with the degree l of approximation in equation (8) as follows: – – –, l=0; — - —
and ——, l=4 for 4th and 8th locally stationary sub-intervals.

The probability distribution of the output response was expressed in advance
by the well-known Laguerre type expansion series expression [4] as:

P0(Y)=Pg (Y; M, S)61+ s
a

l=1

Cl
G(M)l!

G(M+ l)
L(M−1)

l 0YS17, (8)

where

M,
�Y�2

s2
Y

, S,
s2

Y

�Y� , Cl,WL(M−1)
l 0YS1w.

Here, this distribution parameters M, S and Cl can be evaluated based on the
statistics of Y predicted by using equation (7) with correction terms up to n=3.
The parameters mi and si with i=1 are determined in the first locally stationary
sub-interval.

Figure 2 shows theoretically estimated results with correction terms up to l=4
in equation (8) for the 4th and 8th time sub-intervals of local stationarity. In this
figure, the theoretically estimated results on the cumulative probability
distribution of the output response for each locally stationary sub-interval become
closer to the experimentally observed ones by reflecting only the expansion
coefficient bn ( · ) obtained in each locally stationary sub-interval.
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Figure 3. A comparison between experimentally sampled points and theoretically estimated curves
for the output probability distribution of a sound insulation system with a non-stationary random
input over a whole observation time interval. Experimentally sampled points are marked by W, and
theoretically estimated curves are shown with the degree l of approximation in equation (8) as
follows: – – –, l=0; ——, l=4.

The prediction results for cumulative probability distribution of the output
response over a long time period are shown in Figure 3 by reflecting statistically
the temporal change of expansion coefficients observed in each stationary
sub-interval. In this figure, the first expansion term in the theoretical expression
(which coincides with the basic output probability distribution function) is rather
different from the experimentally sampled points. However, it is obvious that
theoretically estimated curves become closer to the experimentally sampled points
as the number of correction terms reflecting the statistics of temporal change of
bn ( · ) increases. Therefore, the output probability distribution of an arbitrary
linear system on intensity scale can be predicted by observing only the coefficients
bn ( · )s reflecting the statistical properties of input signal in each locally stationary
sub-interval and accumulating those statistics over a long time period with help
of the probabilistic sum calculation of exclusive events.

5. 

In this letter, the probability distribution of transmitted intensity fluctuation has
been easily derived by applying the time-varying operator to the basic probability
distribution of output response derived by using the well-known residue theorem
and statistical parameters obtained by a pre-experiment with a test signal of
standard gamma type (which can be easily constructed as an intensity fluctuation
of usually standard white noise). As an application to the actual noise
environment, the proposed evaluation method has been employed for the



   536

evaluation on a sound insulation system of a single wall excited by a non-stationary
music noise.
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